climate policy

Demand Response Potentials in the Textile Industry

dyeing.jpg

Demand Response (DR) helps utilities to manage the peak electricity demand by temporarily shifting the demand on the consumer side instead of building new power plants to meet the short-time peak demand. On the other hand, customers use demand response to reduce their electrical cost using the time-of-use price signals. Nowadays, work is underway to automate the process using automated demand response (AutoDR).

In this post I will not get into the details of DR or AutoDR and rather discuss the DR potential in the manufacturing sector. I believe one of the main barriers to DR in manufacturing is that the DR potential in this sector is not well understood by utilities, companies and other parties involved.

Based on my experience on energy efficiency and demand side management in industry in the past 14 years, for a manufacturing sector or process to have a great potential for Demand Response (DR), it should have one or more of the four characteristics shown in the figure below.

Blog1.1.jpg

Note: A bottleneck is a stage in a process that causes the entire process and the production rate of the final product to slow down.

Let me open this by giving a couple examples below from the textile industry:

There are many DR potential in the textile industry. The first example for the textile industry is in the yarn production process. One of the main process is called “spinning process” which uses different machines such as Ring frame, Open-end machines, etc. The spinning process has the following two DR-friendly characteristics:

  1. It is a batch process

  2. It is a bottleneck process. Often, intermediary products that are fed into spinning machines get lined up for hours on the plant floor waiting to be processed by spinning machines. Having a proper storage capacity will allow to store enough feeding product for spinning machines and shut down the previous process, which account for around 30%-40% of electricity demand of the entire yarn production plants, for few hours during the DR period.

Another significant potential for DR in the textile industry is in wet-processing plants. Wet-processing plants conduct preparation, dyeing, printing, and/or finishing of yarn and fabric and other textile products. Many batch processes exist in wet-processing plants. Also, several processes like dryer, Stenter, or batch dyeing machines can be bottleneck processes that provide DR opportunity. Often wet-processing plants work on several different orders and products; thus, proper production scheduling can provide great DR opportunity. To take advantage of this, there needs to be high level of coordination between different departments within a plant who are in charge of production planning, energy management, paying utility bills, etc. Figure below illustrate the concept of DR potential in production processes with batch processing, storage capacity and a bottleneck process.

blog 1.2.jpg

To sum up, textile manufacturing sector is a complex and heterogeneous sector. Even within one industry subsector, there are completely different subsectors. However, there are great potentials for energy saving and Demand Response in the textile industry . More in-depth understanding of production processes and technologies and energy systems in the textile industry will allow us to tap into these potential.

Please feel free to contact me if you have any question. Also, don't forget to Follow us on LinkedIn and Facebook to get the latest about our new blog posts, projects, and publications. Also see below our related publications and tools.

Some of our related publications are:

1.     Hasanbeigi, Ali; Price, Lynn; (2015). A Technical Review of Emerging Technologies for Energy and Water Efficiency and Pollution Reduction in the Textile Industry. Journal of Cleaner Production. DOI 10.1016/j.jclepro.2015.02.079.

2.     Hasanbeigi, Ali; Hasanabadi, Abdollah; Abdolrazaghi, Mohamad, (2012). Energy Intensity Analysis for Five Major Sub-Sectors of the Textile Industry. Journal of Cleaner Production 23 (2012) 186-194

3.     Hasanbeigi, Ali; Price, Lynn (2012). A Review of Energy Use and Energy Efficiency Technologies for the Textile Industry. Renewable and Sustainable Energy Reviews 16 (2012) 3648– 3665.

Infographic: Textile and Apparel Industry’s Energy and Water Consumption and Pollutions Profile

post-impressionist-1428139_1280.jpg

Although the textile and apparel industry is not considered an energy-intensive industry, it comprises a large number of plants that, together, consume a significant amount of energy which result in substantial greenhouse gas (GHG) emissions too. 
The textile and apparel industry and especially textile wet-processing is one of the largest consumers of water in manufacturing and also one of the main producers of industrial wastewater. Since various chemicals are used in different textile processes like pre-treatment, dyeing, printing, and finishing, the textile wastewater contains many toxic chemicals which if not treated properly before discharging to the environment, can cause serious environmental damage.

With global population growth and the emergence of fast fashion, the worldwide textile and apparel production are increasing rapidly. In 2014, an average consumer bought 60% more clothing compared to that in 2000, but kept each garment only half as long.

The Infographic below shows the Textile and Clothing Industry’s Energy and Water Consumption and Pollutions Profile.

Don't forget to Follow us on LinkedIn and Facebook to get the latest about our new blog posts, projects, and publications. Also see below our related publications and tools.

Infographic-Textile and Apparel energy and water use.jpg

Some of our related publications and tools are:

1.     Hasanbeigi, Ali; Price, Lynn; (2015). A Technical Review of Emerging Technologies for Energy and Water Efficiency and Pollution Reduction in the Textile Industry. Journal of Cleaner Production. 

2.   Hasanbeigi, Ali (2013). Emerging Technologies for an Energy-Efficient, Water-Efficient, and Low-Pollution Textile Industry. Berkeley, CA: Lawrence Berkeley National Laboratory. LBNL-6510E

3.     Hasanbeigi, Ali; Hasanabadi, Abdollah; Abdolrazaghi, Mohamad, (2012). Energy Intensity Analysis for Five Major Sub-Sectors of the Textile Industry. Journal of Cleaner Production 23 (2012) 186-194

4.     Hasanbeigi, Ali; Price, Lynn (2012). A Review of Energy Use and Energy Efficiency Technologies for the Textile Industry. Renewable and Sustainable Energy Reviews 16 (2012) 3648– 3665.

5.    Also, you can check out the Energy Efficiency Assessment and Greenhouse Gas Emission Reduction Tool for the Textile Industry (EAGER Textile), which I developed a few years ago while still working at LBNL. EAGER Textile tool allows users to conduct a simple techno-economic analysis to evaluate the impact of selected energy efficiency measures in a textile plant by choosing the measures that they would likely introduce in a facility, or would like to evaluate for potential use.